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Every effort is made by the NACA to insure that its published
translations are accurate reproductions of the original work of
the authors. Papers are selected for translation on the basis of
interest and probable usefulness and, although an examination is
made for technical soundness, the Committee cannot assume respon-
gibility for the accuracy of the detailed results presented by
the author in the original paper. The Committee will, of course,
call attention to any errors observed at the time of the publica-
tion or subsequent thereto.

A recent application of equation 21 on page 14 of TM 1317
indicated that the denomirnator of the last term, which is given
as 2 in the NACA translation and in the oriziral German document,
should be 1.



4;«-..‘-:-.'7-“) a. /

ERRATA NO. 2
NACA TM 1317

A SIMPLE NUMERICAL METHOD FOR THE CALCULATION OF
THE LAMINAR BOUNDARY LAYER
By K. Schroder

April 1952

In the errata no. 1 issued on this paper, the last term of equa-
tion (21) was corrected as follows:

ﬁ(§p+l) - ﬁ_(E,p_]_)
1

Subsequent consideration of this errata ind%cates that this corrected
term is valid only for the case when k = %?. Therefore, when equa-

tion (21) is used for general applications, the last term therein
should be

L 2k
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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL MEMORANDUM 1317

A SIMPLE NUMERICAL METHOD FOR THE CALCULATION
OF THE LAMINAR BOUNDARY LAYER*

By K. Schroder
ABSTRACT

A method is described which permits an arbitrarily accurate calcu-
lation of the laminar boundary layer with the aid of a difference cal-
culation. The advantage of this method is twofold. Starting from
Prandtl's boundary-layer equation and the natural boundary conditions,
nothing needs to be neglected or assumed, and not too much time 1is
required for the calculation of a boundary-layer profile development.
So far, the method has been tested successfully in the continuation of
the Blasius profile on the flat plate, on the circular cylinder inves-
tigated by Hiemenz, and on an elliptical cylinder of fineness ratio 1l:k4,
Above all, this method offers for the flrst time a possibility of con~
trol by comparison of methods known so far, all of which are burdened
with more or less decisive presuppositions.

OUTLINE

I. INTRODUCTION
II. GENERAL REPRESENTATION OF THE METHOD
III. PRACTICAL EXECUTION

IV. NUMERICAL EXAMPLES AND RESULTS

V. REMARKS REGARDING THE CONVERGENCE OF THE ITERATION PROCESS

*1pin einfaches numerisches Verfahren zur Berechnung der laminaren
Grenzschicht." Zentrale fUr wissenschaftliches Berichtswesen der Luft-
fahrtforschung des Generalluftzeugmeisters (ZWB) Forschungsbericht
Nr. 1741, Berlin-Adlershof, February 25, 1943, :
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I. INTRODUCTION ) S ' :

The flow processes in the laminar boundary layer may be described
by Prandtl's boundary-layer equation. If one limits oneself to the two-
dimensional steady case and introduces, in a suitable region around a

- profile contour C situated in a flow, a curvilinear coordinate system
s,n, the coordinate lines of which consist of parallel curves and nor-
mals of C, that equation reads ' -

= (1)

when vg, vn signify the velocity components in the s,n system, R
the Reynolds number, and p = p(s) the pressure distribution along C
taken from a measurement or calculationl. Equation (1) is complemented
by the continuity equation :

ov ov-
Er S (2)

The transformation

n=1n VE .= Vn Vﬁ

vields, instead of equations (1) and (2), the equation system

ovg §X§ . B 52VS
Vg 7;; + n 5 + p'(8) = E;F? (3)
Vs + 931 =0 (1)

in which R no longer appears explicitly.

15 mathematically complete derivation of equations (1) and (2)
based on physically plausible assumptions may be found in H, Schmidt's
and K. Schrdder's report entitled "Die Prandtlsche Grenzschichtgleichung
als asymptotische Ngherung der Navier-Stokesschen Differentialgleichungen
beil unbegrenzt wachsender Reynoldsscher Kennzahl" (Prandtl's boundary-
layer equation as an asymptotic approximation of Navier-Stokes! differ-
ential equations for indefinitely increasing Reynolds number) Deutsche
Mathematik, 6, Heft 4/5, pp. 307-322. A survey of related literature
is given in H. Schmidt's and K, Schrdder's report "Laminare Grenzschichten,
I. Teil" (Laminar boundary layers, part I) Luftfahrtforschung 19,
Lieferung 3, 1942,
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The following boundary conditions for the Integration of equa-
tions (3) and (4) are usually selected in boundary-layer theory as the °
natural ones from the phy51cal point of view. ¥For an initial value s = g4
an entrance profile : : =

Vg = Vs(so:ﬂ)

is prescribed as a function of 7 (entrance condition). Furthermore,

. in consequence of the adherence 'of the fluid to the contour, the rela-

tions:

ST

which are to be interpreted as limiting processes, are to be valid along
C (adherence condition). Finally, for s-values larger than or equal
to 8o the velocity component vg 1s to converge for 7 —3 = toward
the velocity U(s) which is connected with the prescribed pressure
distribution p(s) Dby

U(s) U'(s) = - p'(s) (5)
(transitional condition).

The general significance of these boundary conditions will be dis-
cussed more thoroughly in the second part of the Luftfahrtforschung
report quoted in footnote 1., Here we shall only point out that the tran-
sitional condition formulated for 7 —) « must not be confused with a
condition for n —> » since for the latter limiting process the veloc-
ity components converge toward those of the basic flow<. The limiting
process 17 —>» » dJenotes, on the contrary, the asymptotic transition
to the boundary values, resulting along C of the outer potential flow
obtained for R'—> =, This can best be made clear by the example of
the stagnation-point flow at the flat plate, treated in the second report
indicated in footnote 1 (by the author and H. Schmidt). Whereas the
quantity & there specified as boundary-layer thickness tends

like 1/pﬁ§ toward zero, a quantity d +tending toward zero, for

instance, like 1/\/R, can be prescribed in such a manner that the flow
outside of a layer of the thickness d adhering to_the contour for

R —> = converges toward the outer potential flow. However, to the
asymptotic transition toward the boundary values of this assumed potential

2Tt is assumed, of course, that this limiting process is'meaning-
ful. : .
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flow along C then there corresponds the limiting process

lim g = lim dVR= =
R—> R—>w

So far, an appropriate existence and uniqueness theorem for this
boundary-value problem does not exist. However, the results obtained
with the new method described below show that the statement of the
problem is perfectly sensible.

In the literature it has been pointed out more than once3 that for-
mal power series developments of the function representing the solution
with respect to 1 make the fact plausible that the entrance profile
cannot be selected completely arbitrarily, but that it is dependent on
the pressure distribution p = p(s).

Qur method for the determination of the velocity profiles yields a
numerical solution of the mentioned boundary-value problem with the aid
of the difference calculation; it is superior to other methods because
it requires no assumptions beyond equations (3) and (4) and the boundary
conditions. In our method, the boundary-layer bonds of the entrance
profile do not appear directly and thus do not cause any difficulties in
the numerical calculation. A severe violation of these bonds causes,
in our method, the variation of the successive boundary-layer profiles
to become completely disordered. ©Small violations of these bonds, in
contrast, do not exert any considerable effect on the further develop-

ment of the profileu.

3compare S. Goldstein "Concerning Some Solutions of the Boundary-
Layer Equations in Hydrodynamics,” Proc, Cambridge Phil., Soc. 26, 1930,
pp. 1-30, L. Prandtl, "Zur Berechmung der Grenzschichten" (Concerning
Calculation of the Boundary Layers) ZAMM, 18, 1938, pp. 77-82, (NACA
™ 959) and H. Gortler, "Welterentwicklung eines Grenzschichtprofils
bel gegebenem Druckverlauf" (Further development of a boundary-layer
profile for prescribed pressure'variation) ZzAMM, 19, 1939, pp. 129-~140,

41, Prandtl and H. Gortler (reports quoted in footnote 3) arrive
at the same conclusion, although on another basis.



=S

EU%, S <

:'..rz"-i'f"_'" .

Cewogwne.

NACA ™ 1317 5
‘ - II. GENERAL REPRESENTATION OF THE METHOD

If one introduces into. equation (3), instead of = s, the new inde-

pendent variable
° dt
£ = Jf — (6)
8o U(t)

under the assumption that U(s) # 0 for s Z So whereby

d§ 1
ds U s)

is valid, and if one uses the new designations
u(t,n) = vs(s,n), T(&) = U(s(e)), u*(E,n) = ult,n) - TE)

there follows from equations (3) and (4) by way of

e U(& »/naudn

with equation (5) taken into consideration, our initial eguation

°

out  d2y* 1 ou T Su u._ du
- = QU gn - — =
SE T o2 G(e) on Jo ot " T T(p) ok (7)

According to the statement of the problem in the introduction, we
have to find a solution :

¥

*
uw o= u(&,m)
of equation (7) for all points (g,n) in the right upper quadrant of
the plane of the rectangular Cartesian E,7 coordinatesd which in
approaching the straight lines

E =0 or n =0 respectively

o1f sépaiéfibn phenomena appear;'the solution will, in general, be
of interest only up to the separation point or possibly a little way
beyond it.
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tends toward prescribed functions:

lim .u#(g,ﬁ) = vg(so,n) = U(sp) (n 20) - (8)
E—>0 -
or
1im ' (E,n) = - T(¢) (¢ 2 0) (9)
n—>0

and which vanishes for 71—

1im u*(&,n) =0 (¢ 2 0) (10)
n—>e

The fundamental formulation of our method consists in using the
functional relation (7) - in the sense of the known method of successive
approximations - for the calculation from a prescribed approximate solu-
tion which already satisfies the indicated boundary conditions of a
sequence of corrected functions which converges toward the actual solu-
tion of the problem; one substitutes the last obtained approximate solu-
tion every time on the left side of equation (7) and integrates the
resultling partial differential equation of the type of the inhomogeneous
heat conduction equation.

The examples so far calculated numerically showed that the iteration
process 1s obviously convergent. Nevertheless, a general proof of this
fact would be very desirable and we reserve returning, in a given case,
to a mathematical examination of these problems. (Compare also Section V.)

One may characterize the method by stating as the desired result a
continual improvement of a glven approximate solution in the sense of
Oseen's method of linearization, Then this linearization of the hydro-
dynemic equations of motion (which, of course, for the boundary-layer
flow taken by itself is not permissible) consists in introducing the
velocity loss u* and in neglecting all nonlinear terms in u*,v and
thelr derivatives, From equation (3) one would thereby obtain

U(s)éyi.._aill+u*g:l—]-=o
X ang ds

thus on the left side (aside from the term u*%% which, however, does

not alter the character of the equation) precisely the expression which
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also appears on the left side of our initial equation (7).

In integrating (under the boundary conditions (8), (9), and (10))
the differential equation

—_—- ST = f(t : (11)

into which had been introduced for abbreviation the function

_ . 1 .

(egn) =2 | gy L utu (12)
| U(s) onJo df . T(e) Ok

to be regarded as known in the sense of our approximations, one may now
use successfully the difference calculation., For the homogeneous equa-
tion this has been done, simultaneously with a proof of convergence, by
R. Courant, K. Friedrichs, and H. Le . For the inhomogeneous equation
here dealt with, the proof of convergence together with a formula for
error estimation may be found in a paper by L. CollatzT.

If one covers the right upper guadrant of the ¢,n plane by a net
of lattice points with the coordinates
>
o = pk ng = ol (p,0 = 0, integers)
(compare fig. 1) and introduces at the same time, with a view to later

applications, the new desighations

x
Upsag = u(Ep,'ﬂc), u p,0 = u*(’ip,'f]o')

St Biloo Bleson " B,
ot [E=E =g ok P,c o §=§p:'ﬂ-=710‘ on P,0

6, Courant, K. Friedrichs, and H. Lewy: '"Uber die partiellen
Differenzengleichungen der mathematischen Physik" (On the partial differ-
ence equations of mathematical physics), Math. Ann, 100, 1928, pp. 32-Tk,
particularly pp. 47-52.

" TL. Collatz: '"Das Differenzenverfahren mit hoherer Approximation
fur lineare Differenzengleichungen" (The difference method with higher
approximation for linear difference equations), Schriften des Math. Sem.
u.d. Inst. f. agewandte Math.d.Univ. Berlin, Bd. 3, Heft 1, 1935.
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there corresponds to the differential equation (11) the difference equa-
tion of first approximation

* ' * ¥ :
uptl,o - u'p,0 W04l - 2uTp o + Wp ool -

If one selects the step magnitudes k and 1 In €& and 7 direction
not independent of each other but so that

-1 (14)

equation (13) is transformed into the simpler difference equation

*
* u*s o+l + Wp,0-1

It can be shown that the solution of equation (15) for the corresponding
boundary-value problem for 1—->0 and therewith also for k—»0 con-
verges toward the known solution of the boundary value problem of equa-
tion (11).

Since the values

* ' > > >
u p,0 (p 2 O) 11*0,0 (U = O) fp,U (p = 0,0 = O)

are known, one may, according to equation (15), siccessively calculate
all values

progressing stepwilse from lattice point column to lattice point column.
Actually, however, we apply another correction at every step in order

to compensate the systematic error originating by the fact that the
derivative appearing on the left side of equation (11)
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was replaced by the difference quotient of first approximation

*
up+l,0 - Wp,o
k

(Compare the following section.)

One notes that due to the transitional condition (10) for the entrance

profile u* 0,0 necesgsarily must vanish for o~—>» and that fp,c

likewlse vanlshes for O0—3« since even the approximate sclution used
for the formation of fp,c was supposed to satisfy the condition (10);

hence one recognizes that the corrected solution (obtained with the aid -
of the difference calculation in the manner described above) also satis-
fies the transitional condition (10). : -

III. PRACTICAL EXECUTION

In practice one may vary the method in such a manner that one does
not at all requlre an approximate solution prescribed at the outset in
the first quadrant of the ¢§,n-plane; one rather determines this approx-
imate solution for every step and then improves it to the desired accuracy
before passing on to the next step. Thus one applies a combined system
of continuation and correctilan.

If one deals with the flow about a profile contour, the initial pro-
file at the point s = Sg 18 best taken from the well-known power-series
developments by Blasius-Hiemenz, the coefficients of which for the first
three terms were given in table form by‘Howarth8. For reasons of con-
vergence, these broken-off series will represent a good approximation of
the solution of the boundary-layer equation only at a small distance from
the forward stagnation point (s = 0) of the outer potential flow. In
the permissible range they represent, as it were, an 1mproved stagnation
point flow.

Our calculations so far have shown that the series are serviceable
up to s-values for which the "first boundary layer bond"

3 ] '
e Y O ) (16)
"] T]:O d

8Com.pare L. Howarth: On the calculation of steady flow in the
boundary layer near the surface of a cylinder in a stream. R & M no.

1632, 193h



10 - ' NACA TM 1317

which is a direct result of equatlons (3) and (6) is’ satisfied with
sufficient accuracy.

.~ In practice, one has therefore to start the calculation by approxi-
mating the function U(s) for small s-values as well as possible by a
polynomial of the form

3 5

U(s) = uys + ugs +'u5s
for the case of a profile symmetrical in free-stream direction, or
respectively, of the form

- 2 3

U(s) = ups + upst + ugs

for the case of a profile unsymmetrical in free-stream direction; one
may sometimes get by with only two terms.

After having determined, in the manner described above, the value
80 > 0 at which the continuation method may start, one first sets up
the connection (given by equation (6))

g‘ﬁum (s > 20)

by evaluating tie integral on the right side, for instance according to
the trapezoidal rule. One graphically represents the functions ¢ = &(s)
and U = U(s) 1in a common diagram so that U = U(t) can be immediately
taken from 1it.

The step magnitudes k and 1, connected by egquation (14), must be
selected so that, first, a sufficlent number of subdivision points are
distributed over the profiles to be calculated, and second, a sufficlently
rapid continuation in €& direction is possible. When profiles of not
too pronounced S-shape (near the separation point) are to be calculated,
elght to ten equidistant subdivision points generally will be sufflcient
to define the profile. In upward direction (that is, for large n values)
one will have to take so many subdivision points that the profile dies
out sufficiently gradually toward the asymptotic value U. This provides
a first indication for the selection of 1 and therewith also of k.

It should finally be remarked regarding the step magnitude k that it
must be at least large enough to make, for fixed £ and variable 7,

the derivatlves QE (obtained in first approximation by formation of

ot .
difference quotients) take a reasonably regular course (compare the
following discussion). Hence the lower limit is set for k and there-
with also for 1.
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i On the other hand, one will be forced to choose the smaliest possible
step magnitude k at points . £ where the curves u = u(fé,const) exhibit
great curvatures (which occurs particularly directly ahead of the separa-
tion point), in order to make a sufficiently exact calculation of the
profiles possible. There 1, too, will necessarily be small. Since,
however, the boundary-layer thickness has greatly increased at the sepa-
ration point, one will have there a great many subdivision points dis-

~tributed over the profile. This is in one respect convenient - the posi-

! tion of the separation point is better defined. On the other hand, the
f expenditure of work increases at such polnts. However, at the end of

gl this section we shall point out a possibility of reducing the steps
in & direction without necessarily having to accept a step reduction
in n direction. At the same time we shall then be able to indicate a
criterion by which the necessity of a step reduction in £ direction

‘may be recognized.

Once a certain selection of step magnitudes has been decided upon,
it is a question of obtaining a first approximation for the values fO,U
appearing in equation (15), in order to be able to execute the first step
in & direction. It should be noted that together with the initial pro-
file at 8 = sy also the values of u for values s < s, may taken

from the serles developments. Particularly the values u 1o (that 1is,
it/

the profile one step ahead of the initial profile) are thus known.

— We then put for a first approximation of the EE%} occuring
0,c :

ot
oul _ 20,0 - U1
ot lo,o k

n
Therewithk/h g% dnp too can be evaluated numerically. Our calculation
0]

experience has shown that this integration may be very conveniently carried
out with sufficient accuracy by use of the trapezoidal rule with the aid
of the present subdivision; this can be done purely schematically by
calculation'according to tables. For at the £ points where the deriva-

tives gz become very large -~ whereby the values \/P Qu dﬂ come to

be of great importance in the calculation of the profiles-and must be
determined relatively exactly as for Instance in the neighborhoocd of the
separation point - it will be necessary to select small k (and there-
with also 1) values so that a sufficient number of subdivision points
are distributed over the profile to allow application of tue trapezoidal
rule wlth sufficient accuracy.
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If one puts, furthermore, with good approximation

(17)

du _ Y0,0+1 ~'Y0,0-1
o 21

m
9
u*l" and uj , may be calculated in first approximation.
s0 ’
-
The values thus obtained will be denoted by E%i]l;c and ﬁquvU'

It will be best to- arrange the entire calculation procedure 1n the form
of a table (compare table I on page 31). With the values ¢btained

du

Eu] one will form corrected values of the derivatives
1,0 o€lo,o

according to the scheme

S
0,0

JE ok

whereupon one obtains (with the aid of table II on page 31) a second

approximation Eﬁﬂl o for the values L with the values 7g, €0,
b4 J
and Cgy taken from the first table. Whereas the derivatives
0,0
formed in first approximation might show at a few points o an irregular
course, this will generally no longer be the case for the corrected deriva-

tives F?ﬂ + The columns for the quantities Dy, l?%?]l g and
tlo,o ’
4

E%Jl’g occurring further on in table II wlll be explained only later.

This procedure is continued until the values obtained in the third-
from-last column of the table no longer vary in the desired decimal. 1In
the examples we calculated the iteration was carried so far that for every
step &4 the values upJU no longer varied except for an error of

about 1/4 to 1/2 percent of the maximum velocity ﬁ(&D) in each case.
For the selected step magnitude k this was the case after two to three
iterations.

Due to the favorable position of the errors, the profiles calculated
in the manner described generally show a very smooth course. If the
u = u(t ,const) are concave in respect to the £ axis, as is the case
for instance in the flow about the circular cylinder or the ellipse near
the separation point (compare fig. 7 and fig. 12), the convergence occurs
only on one side In the direction from larger to smaller values for u.
The opposite behavior exists when the course of this curve is convex with
respect to the £ axis as is the case for instance in the boundary-layer
flow at the flat plate. _
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If one wants to obtain with the described procedure a calculation
of the u varlation as accurate as possible without selecting too small
a step magnitude k, thereby increasing too much the expenditure in cal-
culation, one will find it necessary (as mentioned before) to make at -
every step a correction which takes the fact into account that in setting
up the basic equation (15) the difference quotient of first approximation

¥*
only was substituted for the derivative E?L1
3
p,c

If one were tc select instead the representation of higher approxi-
mation

¥ B
F *]. _ Y p+l,o = U p-l,0
3¢ jp 0 2k

one would obtain by maintaining equation (14)

* * * * *
u otl,o = u p-1,0 + u 0,041 Ul - 2u 0,0 + Ekfp,c (18)

instead of equation (15).

Since this relation, however, (as can be seen immedlately) behaves
conslderably less favorably regarding propagation of errors than equa-
tion (15), the profiles calculated with its aid will no longer show the
smooth course mentloned before. Calculatlon practice has shown that one
obtains very smooth curves if one writes instead of equation (18)

* * 52 *]
- u
ol = Yool 2k = + 2Kf) o (19)
dp,o

and forms the second derivative appearing in it according to the scheme

2 * ) Qg] - 'ég] '
0%u _ lonlpyo+l on je,o-1 . (20)
2
on 0,0 21
from the first derivafive Eﬁ{l already calculated in good approxi-
T] .
p,c

‘mation according to equation (17) by Jumping over. However, the case o =1
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requires special consideration since Eﬁﬂ_' 1s not known at first.
p,0

But if one takes into consideration that according to equation (16)

I N O,

an 0,0 at

one may put

. Bk
MJp,0 Lan P50 - _
[_u_] ., B 10 (or1) -:(go-l) (21)
and hence calculate the value on the left from E?% already known
4p, '

according to equation (17).

We now use the relation (19) not as a substitute for (15) in the
sense that the entire calculatlon is to be made with (19), for i1t became
clear - particularly near the separation point where the derivatives

%% become very large - that the convergence relations here can be easlly
blurred (unless an especially small k value was selected); the values
p . obtained by iteration do not remain quite fixed, but creep on

continously, although only by small amounts (compare also the remarks
in sectilon V).

Rather we use equation (19) for making a correction in the values
ul g obtalned after the last iteratlion in the manner described above.

With the aid of the value [—u] (o 2 1), (already contained in the
Mlo,c
fourth column of table I) to which we add the value Efi Just cal-
| 10,0
culated according to equation (21) we determine (taking equations (20)
and (14) into consideration) the values

-x- u * 1 ou u
Do‘ - + ak = U -l- + = mag— L — -
o =hyo [an ]O,o 02 [an]o,ml [an]o,o_l
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We now assume, for instance, that the values [ue]l,c prescribed by

table II were the final values even in the first procedure; we then
insert the-values Dy  in table II and calculate with the quantities

ko3

BN i ,ﬁ-__:r_"’_.."ﬁ-'ﬂazz—'..:
e ¥

A; + By appearing in.them the values (cofrected with respect to Efé]l

|uf ] Dg + 2(Aq + B j
1
2 1,0 o o o

- these values, too, we note in the table. In the last column of this
P table we write the values ' :

If the corrected values EEJl 5 deviate too much (that is, by more
: b

than 1/ to 1/2 percent of U) from EEQJ.O' we calculate with the deril-
’

vatives
Bue _ E_IQ]]_,& - El].-l,d

E 2k

once more corrected values according to table III, p.31. The values
E%ﬂ].c then represent the final values for the profile at the point
2

E= §&.

For calculation of every step in & direction one must, therefore,
calculate three to four of the calculation tables mentioned. The time
expenditure may be estimated at approximately three to four hours per
step. It should be stressed that all calculatlion operations are of

purely schematic character and can therefore readlly be performed by
assistants.

The values obtained are plotted on millimeter graph paper and the
curve drawn through them, If slight scatter has resulted, after all, at
one point or the ather, one eliminates it with the aid of the drawing
before starting on the next step.

If the graph of the profile calculated just now shows that the curve,
due to the Increase in boundary-layer thickness, at the upper end no
longer dies out gradually enough toward the asymptotic value U, one adds,
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in calculating the following step; and 7 subdivision point in upward
direction. '

The following condition should be mentioned which became evident in
the practical calculation. If a step magnitude not sufficiently small
is selected, two successive profiles may, due to accumulation of errors,
show points where they are somewhat too close, or else somewhat too dis-
tant from each other, compared tc their actual course. In the calcula-
tion this can be recognized by the fact that the third profile following
these two profiles shows a behavior, at these points, compared to the
second profile opposite to the behavior of the first compared to the
second proflle. For = values at which the first two profiles were
too close one notices a gap somewhat too wilide between the last two and
vice versa. If one does not want to repeat the calculation with smaller
steps, one may, as was found practically to be useful, once omit the
corrective calculation mentioned before for the profile to be calculated
next, thereby eliminating the fluctuating of the profiles, and may then
continue calculating in the normal manner,

According to our calculation experiences one can recognize that the
step magnltude k must be reduced in £ direction by the fact that the
two U values obtalned in the corrective calculation which pertain to

the same mng (thus in the example considered above the values [ﬁé]
l’

and {Eé}l 0> deviate from each other by considerably more than l/h to
) —_—
1/2 percent of the pertaining U value.

If a new step magnitude in the ¢ direction, ki, 1s selected k< k

(for instance, ki = %) there appears as a result, because of equation (14),

1] = ‘,2]&1

in 7 Adirection. If one wants to continue the calculation with the
smaller steps k; for instance starting from £ = Er one needs asg the

also a new step magnitude.

initial values for further calculation the numbers

u(tp,017) u(tr-k3,017) (0 = 1,2, . . .)

The first named numbers may be read off directly on the profile curve
for & = E. already obtained. In order to obtain the latter, a double
graphic interpolation must be made. One plots versus £ the values
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u(tp,011) (9 =1,2. ..) read off for the velues of t=typ S

from the curves of the previously calculated profiles. Generally it
will be sufficient to do this for the values u(Ep,cl¥> of three suc-~

cessive profiles, thus for p=r -2, r - 1, r. From the curves drawn
through them u = u(&,011) (o = 1,2 . . .) one may then read off the
values u<§r-k1,cl%> (o =1,2...).

If a boundary layer is to be calculated up to the separation point,
it willl 1n general be necessary to select, -in the proximity of the sepa-
ration point, rather small steps k. Since, however, due to the large
increase in boundary-layer thickness, the profiles are here very elongated,
one would obtaln, because of the small step magnitude 1 1n 'n direc-
tion, a very great number of subdivision points over the profile; this
would of course increase the time expenditure for the calculation of a
step. However, one may save a great deal of calculation expenditure by
selecting, instead of equation (7), for instance

1 ou*  d2y* 1_du/ oy g ( u L1 \ou , 1 du(e)
= - = == e { 22— + + = (22)
2 3¢ o2 T(e) OnJo ok o) 2 )ag 2 adt

as the initial equation, and then performing the integratilon as before.
If one agaln denotes the step magnitudes in & direction by k, those
in 17 direction by 1, one obtains instead of equation (14) the relation

2

1

k = <
n

To the same 1! as in the first considered case, therefore, there corre-
sponds half the step magnitude in E&-direction.

In this manner the step reductions were carried out for the following
examples of boundary-layer flow on the circular and elliptic cylinder.
The convergence of the lterations now occurred no longer only on one side
toward the limit but alternately (except for the values assumed for small

_ﬂc- '

The numerical calculﬁtion showed further that a further step reduc-
tion in £ direction, still for the same 1, for instance with the aid
of the initial relation ' '

_:E.au* _ a,zu* _ 1 @-fna;u_ an- _u*—+ §>§£+ _3_ dﬁ(&.)
B ot a2 T(e) dMdo % T \T(r) M08 b dE

was not advisable because the values assumed in the upper profile parts
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on the right side are given as differences of two (approximately equal)
large numbers and therefore scatter widely; by this the convergence rela-
tions may be concealed. Thus, if one 18 forced to reduce the step mag-
nitude k still further, one will do so in the manner described above
with ‘the aid of the relation (22). It was found that one arrived in this
mapner, even for the extreme example of the circular cylinder, at a
tolerable work expenditure even for ‘the steps immediately ahead of the
_separation point. :

The separation point £ = £, (and therewith s = sg) is found by

graphic interpolation, or extrapolation, of the wvalues [QEJ
B T]_O

contalned in the tables.

The example of the Blasius flow at the flat plate shows very clearly
-the hligh degree of accuracy attained with thls method. Here the profile
obtained by continuation could be compared with the exact profile., After
calculation of six steps, the calculated values deviated so little from
the exact ones that they could hardly be distinguished within the scope
of drawing accuracy. The differences amount to less than 1/2 percent
referred to T.

In order to enable following the mode of calculation in detail, we
add the complete calculation of the first step in the continuation of a
Blasius profile at the flat plate.

Iv. NUMERICAL EXAMPLES AND RESULTS
1. Continuation of a Blasius Profile at the Flat Plate.
The value 8 = 0 1s to correspond to the leading edge of the plate.

For the boundary—layer equation (3) which because of p'(s) =0 1is
simplified to

vy ovg . - ovg _ vy
Os on 2

together with the continuity equation

ds on
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then exists according to Prandtl-Blasius, as 1s well known, a solution

of the form :
vé=%Uq3!(§.)' “with C:%Jﬁ_&\g

for which applies

vg—>0 for n—0
vg—>U for 8 —0 and all 1 v
and
vg—U for T —)ca and all s 2 0

The function @ = ¢(¢) satisfies the ordinary differential equa-
tion of the third order

PO = -0

and the boundary conditions

9(0) =0 ®'(0) =0 lim  o@'(t) = 2.
(—> e

The values of @'(f) are to be taken from the following table:

3ot [Eew ¢ |59
0 0
0.1} 0,066k4 1.1} 0.6813 2.1] 0.9670
0.2] 0.1328 1.2 0.7290 2.21]o0.
0.3] 0.1989 1.3} 0.7725 2.3 0;3523
0.4} 0.2647 1.4} 0.8115 2.4 0.9878
0.5} 0.3298 1.5] 0.8460 2.5} 0.9915
0.6} 0.3938 1.6] 0.8761 2.6 0.9942
0.7] 0.4563 1.710.9018 2.7} 0.9962
0.8] 0.5168 1.8 0.9233 2.8] 0.9975
0.9] 0.5748 1.910.94%11 2.9] 0.9984
1.0} 0.6298 2.0 10.9555 3.01 0.9990

We choose U =1 so that we may put

E=s
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and start our contintation procedure at s = 1. As step magnitude in

n direction we take 1 = 0.6 so that k becomes equal to 0,18, The
initial profile then may be taken directly from the above table, whereas
the profile one step farther back, thus the profile at s = 0.82, is to
be obtained from this table by graphic interpolation. The values are
contained in the following table:

1 |u(0.82,1) 1| u(l,m)

0 0 0 0
0.6 | 0.225 0.6]0.1989
1.2 10.430 1.2]0.3938
- 1.8 | 0.626 1.8] 0.5748
2.4 [0.782 2.4 10.729
3.0 | 0.894 3.0 | 0.8460
3.6 | 0.955 3.6 0.9233
4,2 10.982 4.210,9670
4.8 10.995 4.8 0.9878
5.4 11 5.4 1 0.9962
6.0 { 0.9990

6.6]1

Six steps (that is, up to s = 2.08) were calculated by the method
described. The calculation of the first step is contained completely in
the table added at the end of the report. The results are represented
in figure 2.

2. Circular Cylinder According to Hiemenz,

Hiemenz? measured the pressure distribution on a circular cylinder
of diameter 2r = 9.75 centimeters immersed In water and approached by
the flow at a veloclty of 19.2 centimeters per second. w

¥

In. order to make the quantities appearing in the basilc equations
dimensionless, one introduces the reference length 1 = 1 centimeter
and the reference velocity Vg = T7.151 centimeters per second which corre-
sponds for v = 0,01 gentimete per second to a Reynolds number

R = E%Q = T15.1

9X. Hiemenz: Die Grenzschicht an einem in den gleichférmigen Fluss-
igkeitsstrom eingetauchten geraden Kreiszylinder (The boundary layer on
a rectilinear circular cylinder immersed in the uniform fluid flow),
Dissertation Gottingen, 1911, published in Dingler's polytechn, J Vol. 326
1911, pp. 321-3k2.

. .__;\": .

i
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then fhe velocity distribution measured for O
the separation point, observed shortly before

S s
s =

<.
7

21

T, that is up to

(corresponding to

an angle a of 80° to 82° from the forward stagnation point) may be
‘represented satisfactorily by the polynomial

U(sj =

s ~ 0.006289 83 - 0.000046 sD

On the basis of the previous indication, the solution of Blasius-
Hiemenz could be used up to the value

calculation starts at s = 4.5 (as does Gortler'slO

s = 4,5 (o~ 55°) so that our

).

The value 1 = 0.k,

and thus k = 0,08 were selected as step magnitudes for the first steps.
The representation of o

8

- 1 -
£ = b5 TOET dt and U = U(s)

against s may be seen from figure 3.

The initial profiles at & = - 0.08 and & = 0, taken from Howarth's

tables, are compiled, together with the values of [QE

from the same tables, in the following table:

1 [u(-0,08,1) | u(0,n) E;ﬁi]
5 |s=k.5

0 0 0 0

0.4 |1.282 1.289 | 0.008
0.8 | 2.229 2.2268| 0.104
1.2 2.871 2.948 | 0.249
1.6 | 3.269 3.384 | 0.367
2.0 | 3.488 3.628 | 0.448
2.4 |3.596 3.749 | 0.497
2.8 ] 3.649 3.813 | 0.529
3.2 | 3.667 3.834 | 0.538
3.6 | 3.672 3.839 | 0.540

w | 3.674 3.842

s

} resulting
s=L.5

When the latter values are used, the calculation of the first step
requires only one worksheet of the type described before., With the step
magnitudes indicated;. first four steps. (up to & = 0.32) were calculated.

10gee footnote 3.
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The profiles obtained are representéd together with the initial profiles
in figure % (partly displaced with respect to each other).

With the initial relations (22) as a basis, five further steps
(up to & = 0.52) were calculated for the same 1 = 0.4 and the required
k = 0,04k, Likewise with the use of equation (22), one step (& = 0.54)

with 1 = V0.0B = 0.283 and k = 0.02 and finally two more steps
with 1 = 0.2, k = 0,01 (up to & = 0.56) were calculated. The pro-
files are also represented in figure 5.

duf & .d>
By plotting of the values __jLﬁZ__ the separation point was found

to be Egep = 0.5697, that is sgep = 6.87 (compare figure 6). Thus

all together twelve steps were to be calculated. Figure 7 shows the
curves u = u(t ,const). Their steep decline in the neighborhood of the
separation point is remarkable,

Figure 8 shows a comparison of a few of the profiles obtained by us
(-8) with those of Blasius-Hiemenz (— --B-H), Pohlhausen (— - —P), and
Gortler (— —C) which were obtained for the same pressure distributionll.
The comparison shows, first of all, that the Blasius-Hiemenz solution
becomes insufficient in the neighborhood of the separation point; the
reason obviously lies in the fact that the series developments used con-
verge for large s only slowly, if at all, and that, therefore, with
merely the first three terms the actual course is not satisfactorily
represented there.

Qur values agree best and most systematically with those obtained
by Gortler. The differences are increasingly noticeable toward the sepa-
ration point. The deviations from the values obtained by Pohlhausen,
considered as a whole, remain for this example within tolerable limits
although a systematic variation of the differences cannot be determined.
It is remarkable that the differences assume higher values precisely in
the proximity of the velocity maximum (& ~ 0.36, s~ 6, a~ T1°) (com-
pare the curve for & = 0.32 represented in figure 8) while again sub-
siding to some extent toward the separation point.

The separation point was found according to Gortler in good agree-
ment with our value sgep = 6.8, according to Hiemenz at sgep = 6.98,

and according to Pohlhausen at s8gep = 6.94. An approximately correct

position of the separation point is, therefore, by itself not yet deci-
sive for the usefulness of a method.

1lCompare K. Hiemenz, paper quoted in footnote 9, H. Gortler, paper
quoted in footnote 3, and K. Pohlhausen, "Zur naherungsweisen Integration
der Differentialgleichung der laminaren Grenzschicht" (On the approximate
integration of the differential equation of the laminar boundary layer)
Z,AMM, Bd. 1, 1921, pp. 252- 268.
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3. Elliptic Cylinder of the Aspect Ratio 1l:4.

As a further example, we calculated the boundary layer for an ellip-
tic cylinder of the aspect ratio 1:4, taking as a basls the pressure
distributlion resulting from the potential theory.

1
1= ig-ggd'yo = 4.3 U

were chosen as reference quantitles for the introduction of dimensionless
quantities, with 1, being half the circumféerence of the ellipse and

Uo the free stream velocity. The (dimensionless) velocity at the edge
of the boundary layer could be taken directly from a table by Schlichting
and Ulrich,12 It is represented in figure 9 together with the function

8
= - dt
£ = .E(S) = 0.2 1E)
<

In the interval O = s‘g 0.2 it was possible to represent U = U(s)
satisfactorily by the polynomial

U(s) = 8 - 5.116 83

The initial profile, however, was chosen at s = 0.163 (¢ = - 0.25) for
the reasons mentioned before. For the first six steps 1 0.5 and
k = 0.125 were taken as step magnitudes. The two initial profiles are

represented in the following table, together with the values
Vsj

as_js = 0.163
n | u(-0.375,1) | u(-0.25,n) B—"EJ |
' .98 s = 0,163
0 0 0 0
0.5] 0.0573 0.0589 0.0949
1.0 0.0951 0.0990 0.2672
1.5]0.1166 0.1226 0.4235
2.0 | 0.1268 0.1340 0.5197
2.510.1310 0.1389 0.5703
3.0 | 0.1323 0.1%403 0.5858 - ' .
0.1327 0.1408 .

128, Schlichting und A. Ulrich, "Zur Berechnung des Umschlages laminar-
turbulent" (On the calculation of the transition from laminar to turbu-
lent) Bericht S 10 der Lilienthal-Gesellschaft (1940), pp. 75-135.
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From £ = 0.5 onward the steps could, first, be increased. The
followlng further steps were calculated: Seven steps with

7 = 0.5 =0.707L and k = 0.25 (uwp to & = 2.25), three steps with

1=1,%k=0.5 (up to & = 3.75), four steps with 1 = V2 = 1,41k
and k=1 (up to & = T7.75), and nine steps with 1 =2 and k =2
(up to & = 25.75).

With the aid of the starting equation (22) another step reduction
was made. The further steps were: Three steps with 1 =2 and k =1

(up to £ = 28.75) and finally one step with 1 = V§—= 1.41% and k = 0.5
(up to & = 29.25). A complete calculation was thus made of 33 steps
altogether.

It became clear that selection of larger steps is not advisable,
particularly at the point where the curve U = U(s) turns from its
steep ascent to the flatter course (compare figure 12).

On the "high plateau" of velocity distribution itself one could
have chosen steps somewhat larger but they would have had to be reduced
agaln when approaching the separation point. A large number of the pro-
files we calculated can be seen in figure 10. The separation point was

determined from the variation of [?E] _ as Sgep = 8.475 (compare
n=0
figure 11).

Since Schlichting and Ulrich completely calculatedl3 the same
example once according to the ordinary Pohlhausen method (Pu—method),
and then according to a Pohlhausen method modified by taking a polynomial
of the sixth degree as a basis (P6—method), the comparison could be made
for a number of profiles. The results are compiled in figures 13 and 1h4.

Ag far as the pressure minimum the deviations between our curves
and the P)~ and Pg-curves are not too large. However, larger deviations
appear in the proximity of the separation point. There the profiles of
the original Pohlhausen method agree with ours better than the profiles
of the Pg-method, especially for small 17 values. The resulting separa-
tion point was, according to the Pj-method, at sgep = 8.38, according
to the Pg-method, at Sge, = 8.26; thus these values (especilally that

of the Ph-method) do not deviate too widely from our wvalue.

13quoted in footnote 12.



RSP

L

_v
.

o 1:
Pl AR i L A

s
o

NACA TM 1317 ' ' , 25
V. REMARKS REGARDING THE CONVERGENCE OF THE ITERATION PROCESS

.. Regarding the conditions of convergence of the iteration process
described in section III, we can prove the following theorem which will
probably be sufficlient for the requirements of practical calculation.
If there applies for the profile at the point ¢ =&, for all q g'nco'

0 = [uly, ;< T(k)

and » 3 . _
ol A
_ EP;T\ < 1+ - gp,T]
T(g) - T(&p)

the sequence of the velocity values obtained by the iteration process

[un]p.*.l,lo' (U <= UO)

converges with increasing n.

Thus one is always able to predict, when calculating a new step,
whether the lteration process will converge, The presuppositions of
the theorem are satlsfled wlth certainty when for all 1 s 100

< = 52u <
Ep)“ p 2 gp;T\

apply as is the case for instance for the profiles before the pressure
minimum; for then

au] < [au} _ _ =
n = =7 |= = [u] < U(tp)
L‘ Eo,n o Londeg,dt s Thet T

is valid if q*- 1s selected so that

o Bey,n = [%ﬂﬁp,n* (n = nop)
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The presuppositions are satlsfied also for the S-shaped profiles

beyond the pressure minimum when du does not become too large. qu

the examples we calculated, boundary-layer flow for circular and elliptic
cylinder, the presuppositions are satisfied, up to the separation point.
Proof of the theorem: If one takes into consideration that according

to the procedure of section III one has to put

[u* J _ Wo,o41 + Wp,0m1

_5.2] S ] g e - o2 +

U(Ep)Lom E oM T=1 2k

[u“]p+l, g = Yp-1,0
2k

N[

there follows with

Joonst, s (oo -[o
[ p*’l,c T=l,2,¢.¢.,a p+l’T p+l’T

with the presuppositions taken into consideratién, obviously

[]p+10

=L (U(%) - wp,1) [n]puy

(o < o5)

s bl

2U(§p)

<
= [du]p'f'l,ﬁ'
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with 0 <a <1 and a beind independent of n. Furthermore, one can

~_ see for oneself that a (0 <« <1, independent of n) can be chosen
. 8o that simultaneously the estimations

o - [t [

. <
. |[uu+%Jp+l,c - [uu]p+l,o = a {éujp+l,c

exlst so that

A

[du*'l}p»l,c < [:dn:l p+l,0

must be true as well.

Hence there exists the limit

Up+l,0

lim
N> [un:’ml’d

since the series at right may be majorized by a convergent geometrical
series.

One recognizes further that - if equations (18) or (19) are used
instead of equation (15) - if convergence of the iteration process
can be proved under the assumptions that for ¢ = Ep and all 17 3 Mo

0 S (g, < (e,

B
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and

du

on |t

since one then finds the estimations

n

<[u], |
p N gp,ﬂ

(2l ,ny T(Ep) - [u]

+ gp nl Ei J
T(e,) T(e,) “lerlyo

l[u“"lJml,l - [u“}m,l

—-— + — ~
U(tp) u(ey)

Oep) -
[u]gpznc P [ulgp’nc [ ]
u - |uy 4
A u+1 p_’_l,o- p+l,o- U p+l,0

thus

<
d. = d:
[.u+l]p+l:c @ [ ?]p+l,0

again with 0< a< 1 and a independent of n, These presuppositions
are satisfled for instance for the profiles before the pressure minimum,
However, in the proximity of the wall, 1f the profiles there show an
approximately rectilinear course, the convergence will take place only
very slowly.

Beyond the pressure minimum one can, therefore, not arrive at a
general statement on the convergence. As mentioned before, our calcu-
lations in the proximity of the separation point showed that the case
of divergence may actually occur. Therewith the procedure we selected,,
using the relation (19) merely for the correction calculation, proves
to be perfectly reasonable also from the general point of view now
consldered. '

Correspondingly, one recognizes that the iteratlon process performed

with the aid of relation (22) certainly is convergent at the point
€ =¢&, for oS 0, if there for all 7 = s

0s [u]gp,T—] < T(tp)
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and
-a-u—l -rl + [u]gp’n for [u]gp’n <1
Ml _JE T Ty E
= < 4 |
U(gp)_ u i
. Ly (1 - [i]gg’n)for [—]Ep,ﬂ> 1
LR Ut /0 T(ep) 2

If one takes generally the initial relation

1 ouw* %y* 1 Jdu f 1 du a u* 1\\ ou
= -S4 o= Qu NMan - 22—+ (1 - ou .
m 3¢ on2 T(e) onJpy 3t \U(g) ( ﬁ) ot

(1-%)@—(%1 (m 2 1)

convergence at the point ¢ = §p for o = 0p Wwould be assured under

the following sufficient conditions: For all 1 < Nn0o there shall be

valid

0 E- [u]gp,-n < ﬁ(gp)

and
Yomls,n T T T
< : :
u(t) 1, <.2_ ] [i}gp,n>for Llom |
2\ T(ep) ue,) ™
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Thus, if one wants on the right side a positive limit also for
[u]gp R (%) UE,)
m must be not greater than 3.

Translated by Mary L. Mahler
National Advisory Committee
for Aeronautics
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THE FIRST STEP IN THE CONTINUATION OF

THE BLASIUS PROFILE

I
. . .
%y By 7 Cq [ul ]1 o [“l:ll g
Ag €g By ) o ot ’ '
a—“—} —fﬂcﬂ u =0.18 [ = Bg7, =018[u*] = -age +3B S0 T00ul |y g =[_u*} 1

b [35 0,0 0 [55]01-, o {aﬂ}o,c [Bn]o,a e 0,0 %o | Ao * Bo z Ag + Bg + Co e

0 0 0 0.3282 0 _ 0 0 -1,0000 o

0.6} -0.1450 -0,0435 0.3282 0,05908 -0.0026 <0, 1kk20 ~0.,0209 | -0,0235 -0.8031 -0,8266 0.173%
-0.3461 -0.1038 -

1,2| -0.2011 =0,1473 0.3132 0.05638 -0,0083 ~0,10912 20,0219 | -0.0302 -0.6132 -0.6434 0.3566
-0,14855 -0.1457 :

1.8] -0.28L44 -0.2930 0.2793 0,05027 -0,0147 -0.07654 -0.0218 | -0.0365 -0, 4386 =0.4751 0.5249
-0.5788 -0.1736 .

2.4] -0.294h -0, 4666 0.2260 0.0L4068 -0,0190 -0.04878 0,014k | ~0,0334 -0.2896 -0.3230 0.6770
-0.5611 -0.1683

3.0] -0.2667 -0.6349 0.1619 0,0291k% -0,0185 -0.02772 ~0,0074 | -0.0259 -0.1739 -0,1998 0.8002
-0.1428 -0,1328 )

3.6] -0.1761 -0.76T7T 0.1008 0.01814 -0,0139 -0,01381 -0,0024 | -0.0163 -0.0935 ~0,1098 0.8902
-0.259% -0.0778

k.2] -0.0833 -0,8455 0.0537 0.00967 -0,0082 -0.00594 -0,0005 | -0,0087 -0.0445 -0.0532 0.9468
-0,1233 ~0,0370

4,8] -0.0k00 ~0.8825 0.0243 0.00437 -0,0039 ~0.00220 -0,0001 | -0.0040 -0,018% -0.022L 0.9776
-0,0611 -0,0183 |

“5.4| -0.0211 -0,9008 0.0093 0.00167 -0.0015 ~0.00068 0 -0,0015 -0.0066 ~0.0081 0.9919
~0.0267 -0.0080 -

6.0] -0.005% -0.9088 0 0 0 o} 0 0 -o.ooi9 -0,0019 0.9981
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Figure 2.- Continuation of a Blasius profile at the flat plate.
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Figure 3.- The functions

t = t(s), U=1U(s)

for the circular cylinder.
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Figure 4.- The four first profiles calculated according to the difference

method for the circular cylinder.
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Figure 6.- Determination of the separation point for the circular cylinder
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Figure 7.- The curves u=1u(¢ const,) for the circular cylinder.
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Figure 8.- | Comparison of the profiles for the circular cylinder. For
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Figure 9(a).- The functions & = ¢(s) and U =U(s) for the elliptic
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Figure 9(b).- The functions & = &(s) and U =TU(s) for the elliptic
cylinder.
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Figure 10.- Velocity profiles for the elliptic cylinder.
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Figure 14.- Comparison of the profiles for the elliptic cylinder.
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